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Abstract

This analysis examines the technical and economic feasibility of achieving global Level
5 autonomous vehicles (AVs) based on current experience with emerging Al models. Cur-
rent mixed-methods approaches face fundamental scaling limitations that preclude true
global Level 5 autonomy, while transformer-based approaches offer superior generalisa-
tion but face significant computational barriers. Through detailed computational mod-
elling, we project that transformer-based approaches will become viable for mass-market
deployment by 2050 (range of 2042-2058) following a predictable trajectory of efficiency
improvements. Our analysis indicates that, while an unoptimised transformer model
would require 89 years of computation at a cost of over $3.5 billion in energy alone,
emerging efficiency improvements could reduce these requirements by up to 100,000x,
bringing total development costs to a present value (PV) of $618 million over the period
to 2050. We estimate deployment will require a coordinated research agenda spanning
2025-2050, with critical milestones including $100 million dollars for data acquisition by
2030, ongoing data management costs, $475 million for model training by 2040, and ve-
hicle constraints resolved by 2050.
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1 Executive Summary

Truly autonomous vehicles (Level 5) remain an elusive goal despite decades of re-
search and billions in investment. Recent advances in transformer-based Al models present
a compelling new approach, but their computational requirements appear prohibitive at
first glance. This comprehensive analysis examines the path to true autonomy through
both current approaches and emerging efficiency improvements on transformer-based
systems.

Our key findings include:

« Current mixed-method approaches to autonomous driving, while successful in con-
trolled environments, face fundamental scaling limitations that preclude true global
Level 5 autonomy.

« The data input required for AVs is expensive but achievable, taking about 3 years and
$100 million to gather. The data is around 4 exabytes in size and so has significant
ongoing management costs.

« An unoptimised transformer model for autonomous driving would require approx-
imately 3.3 x 10?2 FLOPS of computation during training, based on using 11 trillion
parameters and 1,500 trillion tokens of training data.

+ Such a model would take 89 years to train on 50,000 high-end GPUs and cost over
$3.5 billion in energy alone — clearly impractical.

 Emerging efficiency gains could conceivably reduce these requirements by 100,000x
by around 2050.

« By 2040, the training problem will have likely diminished to the scale of current GPTy4
efforts, making model training feasible for major businesses. Training at this point is
estimated to cost around $475 million. However, onboard power requirements still
keep deployment out of reach.

* By 2050, the efficiency improvements would also allow for on-vehicle inference us-
ing only 3.5 kW of power. This would translate to a reduction in vehicle range by a
manageable 28%.

+ The overall PV of the investment amounts to $618 million with total expenditure of
around $1.57 billion over the period to 2050. This figure is per product and excludes
a range of supporting costs such as reserach, regulatory, legal and infrastructure.

Our analysis suggests that, while significant technical hurdles remain, a transformer-
based autonomous driving system with targeted efficiency improvements could become
economically viable by 2050 (within a range of 2042-2058).
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2 The Limitations of Current Autonomous Vehicle Approaches

The autonomous vehicle industry has made remarkable progress using hybrid ap-
proaches combining rule-based systems, traditional computer vision, and targeted ma-
chine learning models. Companies like Waymo (Markoff 2024) and Tesla (Bretting 2024)
have demonstrated Level 4 autonomy in controlled environments, primarily within well-
mapped metropolitan areas with extensive infrastructure annotation. However, these
approaches face fundamental scaling challenges that prevent them from achieving true
Level 5 autonomy.

Current methodologies rely on exhaustive pre-mapping and annotation of driving en-
vironments. Each road system requires detailed high-definition mapping, manual anno-
tation of traffic patterns, and programming of specific rules for local conditions (Waymo
Team 2020). This approach works effectively in:

+ Urban areas with consistent infrastructure (Phoenix, San Francisco)
+ Well-maintained highways with clear lane markings
+ Environments where edge cases can be identified and managed

+ Markets with substantial existing mapping infrastructure

However, the computational and economic requirements for global deployment of
true Level 5 autonomy presents insurmountable challenges using current approaches:

1. Manual Annotation Scaling: Extending current approaches to encompass global road
networks would require annotating at least 40 million kilometers of road worldwide
(Central Intelligence Agency 2022). At current productivity rates, this would likely
require thousands of engineering teams working for decades.

2. Maintenance Burden: Road conditions, signage, and infrastructure evolve continu-
ously. Maintaining current annotation approaches would require permanent large-
scale engineering teams in every market.

3. Edge Case Explosion: Different regions present unique driving challenges. The com-
binatorial explosion of edge cases makes rule-based approaches mathematically
intractable.

Thinking about the diversity of global driving environments highlights the challenges
in scaling the current approach (see Figure 1):

- Developing Markets: Rural roads in sub-Saharan Africa, India, and Southeast Asia
often lack basic infrastructure like lane markings, traffic signs, or consistent road
surfaces

« Cultural Variations: Different regions have distinct traffic customs, from the organ-
ised chaos of Vietnamese intersections to the informal right-of-way systems in Eu-
ropean village centers

« Weather Extremes: From snow-covered Nordic roads to sand-swept Middle Eastern
highways, environmental variations require extensive specialised programming

- Infrastructure Inconsistency: Even within developed nations, infrastructure stan-
dards vary dramatically between urban centers and rural areas
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Figure 1: Examples of road conditions around the world
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3 The Transformer Revolution and Autonomous Driving

The breakthrough success of transformer-based models in natural language process-
ing and computer vision suggests a more scalable approach to autonomous driving may
be possible (Vaswani et al. 2017). These models demonstrate remarkable generalisation
capabilities, handling tasks and contexts far beyond their explicit training data (Bubeck
et al. 2023; Chang et al. 2024).

To establish a baseline for our extrapolations, we start with GPT4. GPTz, released by
OpenAl in 2023, represents a reasonable benchmark for large language models. GPT4 built
on the success of its predecessors GPT2 and GPT3 to deliver unprecedented capabilities in
natural language understanding and generation. Designed as a general-purpose Al assis-
tant, GPT4 demonstrates remarkable versatility across tasks ranging from creative writing
to complex reasoning, marking a significant milestone in the development of Al (OpenAl
2023a).

While newer models have emerged since its release, GPT4 remains a widely-used refer-
ence point for measuring progress in transformer-based Al systems, with its architecture
and training methodologies influencing the broader direction of large language model
development.

The computational, financial and economic investment in GPT4 was significant:

 Parameter count: Approximately 1.76 trillion parameters (Bastian 2023);

- Training data: Approximately 13 trillion tokens (which is maybe 50TB of text data)
(Bastian 2023);

« Training compute: Estimated at 10?4 — 10% FLOPs (McGuinness 2023);

+ Training infrastructure: Approximately 25,000 A100 GPUs for 3-4 months (McGuin-
ness 2023);

- Energy consumption: Around 52-62 GWh for the training process (Bowen 2023);

- Training cost: Approximately $60-100 million in hardware and energy (Bowen 2023;
McGuinness 2023);

+ Model size: Approximately 500GB for weights during inference

« Processing speed: 10-30 tokens per second for text generation

GPT4, while representing one of the most computationally intensive Al systems ever
developed, remains primarily constrained to text processing, with only limited multi-
modal capabilities in its GPT4V variant that can process images but not generate them
(OpenAl 2023b). Despite its transformative impact on natural language tasks, GPT4's in-
ability to handle real-time sensory input, temporal reasoning, or direct control of physical
systems highlights the enormous leap required to achieve autonomous driving capabil-
ities. This gap between current text-based Al and the multimodal, real-time decision-
making requirements of autonomous vehicles underscores the computational and archi-
tectural challenges that must be overcome.
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341 Vision Transformers: Adapting the LLM Architecture

The application of transformer models to visual data represents a fundamental shift in
computer vision, drawing on the same self-attention mechanisms that revolutionised nat-
ural language processing. The adaptation wasn't immediately obvious — transformers
were designed for sequences, while images have no inherent ordering. However, re-
searchers discovered that treating image patches as ‘tokens’ could leverage transformers’
ability to model long-range dependencies, a critical advantage over existing convolu-
tional neural networks (CNNs) which were limited by fixed receptive fields (Dosovitskiy
et al. 2020).

Transformers offer several key advantages for visual processing:

- Global Context Understanding: Unlike CNNs that build understanding through local
receptive fields, transformers can attend to any part of an image, enabling better
understanding of spatial relationships (Li, Wang, et al. 2023).

« Scalability: Transformers appear to scale more efficiently than CNNs, with perfor-
mance continuing to improve with larger models and datasets (Zhai et al. 2022).

- Transfer Learning: Pre-trained vision transformers transfer knowledge across tasks
more effectively than traditional CNN architectures (Alijani et al. 2022).

- Unified Architecture: The same architecture can handle multiple modalities (vision,
language, audio) without requiring specialised components (Lim et al. 2025).

Vision transformers represent a remarkably rapid evolution in computer vision, emerg-
ing only in 2020 but achieving breakthrough results that challenged decades of CNN dom-
inance within just a few years. This explosive development trajectory mirrors the pattern
seen in natural language processing and suggests similar potential for rapid advancement
in a range of applications. The pace of progress has been fast and consistent with new
variants and improvements appearing every few months:

« Original ViT (2020): Dosovitskiy et al. divided images into 16x16 pixel patches, treat-
ing each patch as a token. Initial results required large datasets (JFT-300M) but
demonstrated that transformers could match or exceed CNN performance on im-
age classification tasks (Dosovitskiy et al. 2020).

+ DETR (2020): Facebook’s Detection Transformer applied the architecture to object
detection and segmentation, showing that transformers could handle complex vi-
sion tasks beyond classification (Carion et al. 2020a).

+ SETR (2020-21): Developed specifically for semantic segmentation, demonstrating
transformers’ ability to capture fine-grained spatial information (Zheng et al. 2021).

+ DeiT(2021): Data-efficient Image Transformers showed that vision transformers could
work with smaller datasets through knowledge distillation, making them more prac-
tical for real-world applications (Touvron et al. 2021).

« CLIP (2021): OpenAl’s breakthrough in connecting vision and language, training on
400 million image-text pairs to create a model that understands both modalities
within a unified framework (Radford et al. 2021).

« Swin Transformer (2021): Introduced hierarchical structure and shifted windows
to reduce computational complexity while maintaining performance, making trans-
formers more efficient for dense prediction tasks (Liu, Lin, et al. 2021a).
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 MAE (2022): Masked Autoencoders for self-supervised learning, showing that trans-
formers could learn robust visual representations from unlabeled data (He et al.
2022).

+ EVA (2022): Achieved new state-of-the-art results with 1 billion parameters, demon-
strating the continued scalability of vision transformers (Fang et al. 2022).

+ GPT-4V and Gemini (2023-2024): Integrated full multimodal capabilities into large
language models, showing that transformers can seamlessly process and generate
across visual and textual modalities (Gemini Team, Google 2023; OpenAl 2023b)

As of 2025, vision transformers have not only matched but often surpassed CNNs
across most computer vision benchmarks :

- Image Classification: Models like EVA-Giant achieve 90%+ accuracy on ImageNet,
outperforming the best CNN architectures.

- Segmentation: Mask2Former and similar architectures provide unprecedented ac-
curacy in both semantic and instance segmentation

« Video Understanding: TimeSformer and ViViT demonstrate temporal reasoning ca-
pabilities essential for dynamic scenes (Arnab et al. 2021).

« 3D Vision: Transformer architectures are being successfully applied to point clouds
and 3D scene understanding (Lu, Xu, et al. 2025).

The progression of vision transformers directly addresses many challenges in autonomous
driving:
+ Multi-Camera Fusion: Transformers naturally handle inputs from multiple sensors,
crucial for 360-degree environmental understanding.

- Temporal Integration: Their ability to model sequences enables tracking objects
across frames and predicting future trajectories.

+ Scene Understanding: Global attention mechanisms help understand complex vi-
sual scenarios like traffic.

* Robustness: Self-attention can better handle variations in lighting, weather, and
road conditions than traditional vision approaches (Lai-Dang 202z).

These developments demonstrate that transformer architectures are not just applica-
ble to, but increasingly dominant in, computer vision tasks. The combination of superior
scalability, transfer learning capabilities, and unified multimodal processing makes them
a leading candidate for the complex visual processing required in autonomous driving
systems.

TFor advances in 2025, many of the best sources are the code repositories themselves such as EVA Giant,
Mask2Former and TimesSformer
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4 Current Industry Data Collection Efforts

Transformer-based vision models are, however, notoriously data-hungry, requiring
large amounts of data across diverse domains (Lu, Zhang, et al. 2022). Major players in
autonomous vehicles are already accumulating the massive datasets necessary for these
approaches — and many are actively pursuing transformer architectures as their path to
Level 5 autonomy (Ngiam et al. 2021).

Tesla has emerged as the industry leader in data collection scale, leveraging its mas-
sive consumer fleet to accumulate approximately 9 billion miles with Autopilot engaged
and 1 billion miles with Full Self-Driving capabilities (Alvarez 202z; Tesla, Inc. 2025). This
fleet-based approach provides continuous data collection across diverse conditions with
minimal marginal cost, having already gathered approximately 333,000 hours of driving
data (assuming 3omph average speeds). More importantly, Tesla has moved beyond data
collection to implementation, integrating transformer-based networks into its FSD stack
for object detection, path planning, and behavioral prediction, demonstrating the practi-
cal viability of these architectures in production vehicles (Think Autonomous 2023).

Waymo, by contrast, has adopted a more focused approach, prioritising high-quality
data collection in specific geographic areas rather than broad-scale accumulation (Mis-
raa et al. 2025). Their vehicles provide approximately 250,000 autonomous rides weekly
in controlled environments like San Francisco and Phoenix, combining real-world driv-
ing with sophisticated simulation environments (Team 2025). This strategy emphasises
safety and validation over volume, though Waymo’s co-CEO Dmitri Dolgov has confirmed
they have "leveraged the technology of transformers for behavioral prediction, decision-
making, and semantic understanding” within their autonomy stack (Dolgov and Thrun
2024).

Beyond these industry leaders, a broader shift toward transformer architectures is ev-
ident across the sector. Companies are moving from pure rule-based or convolutional ap-
proaches to hybrid systems that incorporate transformer components for specific tasks.
These implementations typically utilise transformers for particular components—such
as scene understanding or trajectory prediction — rather than end-to-end systems, re-
flecting both the current computational constraints and the incremental path toward full
transformer-based autonomy (Lai-Dang 2024).

The convergence of massive data collection efforts and active transformer implemen-
tation across major industry players suggests an industry-wide recognition that this ar-
chitectural approach represents a promising path to Level 5 autonomy. As computational
efficiency continues to improve and datasets grow, the transition from component-level
applications to full end-to-end transformer systems appears increasingly inevitable.
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5 Scaling Requirements for Autonomous Driving

From this point forward, our analysis becomes increasingly speculative, based on ex-
trapolations from GPT4's architecture and historical trends in computing power improve-
ments. While we acknowledge these projections involve considerable uncertainty, they
provide a framework for understanding the scale of transformation required to move from
text-based language models to real-time autonomous driving systems while still using a
transformer based approach. Acknowleding this, we have aimed to be open and clear
about the assumptions, results and uncertainty. The full set of assumptions are set out
in Appendix A, detailed results are in Appendix B and sensitivity analysis is in Appendix C.

The first critical step for this extrapolation is assessing how much larger an image-
based transformer model for autonomous driving would need to be compared to text-
focused systems like GPT4. This comparison requires understanding fundamental differ-
ences in how these systems process information and represent knowledge.

54 Training Data Requirements

To understand the scale of data requirements, we must first clarify what constitutes a “to-
ken” in different contexts. In GPTs, a token typically represents a word or sub-word unit
— roughly 3-4 characters of text. A single sentence might contain 10-20 tokens, allowing
the model to process textual information at a rate roughly matching human reading com-
prehension (OpenAl 2025).

For an autonomous driving system, tokens take on an entirely different meaning. Each
“token” would likely represent a patch of visual data — perhaps a 16x16 pixel segment
of a camera frame, similar to what is currently used in Vision Transformers. At 30 frames
per second across multiple cameras, a vehicle generates hundreds of thousands of visual
tokens every second, compared to GPT4's processing of a few tokens per second (Doso-
vitskiy et al. 2020).

This fundamental difference drives massive scaling requirements:

- Visual density: Each frame contains far more information density than text, with
spatial relationships and fine-grained details critical for safety.

- Temporal requirements: Unlike text consumption at 1-2 tokens per second, driving
requires processing 30fps video across multiple cameras.

- Scenario coverage: The model must encounter rare edge cases — like emergency
vehicles, construction zones, or unusual weather — frequently enough for reliable
learning.

- Environmental diversity: The system must generalise across global variations in in-
frastructure, traffic patterns, weather conditions, and road quality.

Each of these factors is estimated to necessitate 3-4x the training data of GPT4's text-
based learning. These factors compound multiplicatively, giving a range of 81-256 x. Our
estimates below are based on approximately 1,500 trillion tokens of training data being
needed to capture the breadth of scenarios required for true Level 5 autonomy. This rep-
resents 120x GPT4's dataset, central to the range.
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To make these numbers concrete, consider the practical realities of collecting such a
dataset. A modern autonomous vehicle equipped with 8 cameras at 1280x720 resolution
generates visual data at an extraordinary rate:

Table 1: Data generation parameters for autonomous driving system

Parameter Value
Cameras per vehicle 8
Video resolution 1280 x 720 pixels
Frames per second 30
Patch size 16 x 16 pixels
Patches per frame 3,600
Tokens per second 864,000
Data generation rate 2.2 GB/sec

This data generation rate—nearly 2.2 gigabytes per second—means that accumulating
our estimated 1,500 trillion tokens requires approximately 500,000 hours of continuous
driving. The total dataset would occupy nearly 4 million terabytes (4 exabytes) of storage,
making data management itself a significant engineering challenge.

To contextualise the challenge of storing and processing 4 million terabytes of driving
data, we can compare it to the scale of YouTube, one of the largest video platforms in the
world. YouTube receives an estimated 500 to 700 hours of video every minute, translating
to roughly 1-1.5 petabytes of data per day, or approximately 1.2 to 1.5 exabytes annually
when accounting for compression and redundancy.

Despite this, the economics of data collection are surprisingly manageable. Using a
fleet-based approach similar to Tesla's current operations:

Table 2: Data collection fleet requirements and costs

Parameter Value
Vehicle fleet size 50 cars
Hours per vehicle per day 8

Total hours generated per year 146,000
Years needed for collection 3.44 years
Cost per vehicle $500,000
Cost per driver hour $150

Total data acquisition cost $100,231,481

This $100 million investment represents roughly 3-4 years of dedicated data collec-
tion with a modest fleet—a significant but achievable undertaking for major automotive
manufacturers or technology companies. The timeline aligns well with typical automo-
tive development cycles, suggesting that data collection need not be the limiting factor
in transformer-based autonomous vehicle development.

Returning to the Youtube comparison, our estimated dataset is 4 exabytes collected
over 3-4 years—is broadly comparable to YouTube's ingest volume during the same pe-
riod. However, the comparison understates the complexity as autonomous vehicle datasets
would need to be captured from multiple synchronised high-resolution cameras, often in
raw or lightly compressed formats, and must be fully retained for annotation and model

Page 13 of 50



training. While the scale is formidable, systems capable of managing YouTube-level in-
gest and retention provide a real-world precedent for the feasibility of transformer-scale
autonomous vehicle data acquisition.

The quality and diversity of this data would be as critical as quantity. Unlike GPT4's text
training, which could source from the relatively curated internet, autonomous vehicles
must capture:

+ Edge cases that may occur once in millions of miles;

« Regional variations in traffic patterns and infrastructure;

+ Weather conditions from desert heat to arctic snow;

« Human driving behaviors across different cultures;

« Unusual scenarios like emergency vehicles, construction zones, and road incidents.

These requirements explain why simple data acquisition costs represent only part of
the challenge. The data must be curated, annotated, and structured to ensure compre-
hensive coverage of the scenarios a vehicle might encounter over its lifetime. This trans-
forms data collection from a passive logging exercise into an active engineering effort to
capture the full spectrum of driving complexity.

While our projected data acquisition budget of $100 million may appear substantial,
it is well-aligned with real-world precedents when adjusted for complexity and fidelity.
Turning to Google again for another example, Google's Street View program — which has
collected over 16 million km of imagery data globally since 2007 (Google 2025) — report-
edly operates at a cost of roughly $1-52 per mile for data gathering, primarily using con-
tractor drivers and relatively simple camera rigs.

In contrast, an autonomous vehicle training dataset must not only capture high-resolution,
multi-sensor input across diverse environments, but also log detailed driver behavior,
synchronise human decisions with visual context, and ensure safety-critical edge case
coverage. This requires custom vehicles, expert drivers, and extensive annotation infras-
tructure. Consequently, our cost estimate of $100 million for 500,000 hours of supervised,
training-grade driving data—equivalent to over 15 million miles at an average speed of 30
mph (i.e. just less that $7 per mile) —represents a reasonable estimate relative to the
depth and quality of data required for transformer-based autonomy.

Beyond the initial $100 million data acquisition investment lies the substantial on-
going challenge of data storage and retention. Our estimated 4 exabyte dataset would
require approximately $8.8 million per month in cloud storage costs using enterprise-
grade archival storage with geographic redundancy—totaling over $105 million annually
(GDELT Project 2020).

This recurring expense represents a fundamental shift from traditional automotive de-
velopment economics. Unlike conventional vehicle testing data that might be discarded
after analysis, transformer-based autonomous systems require persistent access to the
full training corpus for model updates, validation, and regulatory compliance. The stor-
age costs alone exceed the entire annual R&D budgets of many automotive suppliers,
highlighting how data-centric Al approaches fundamentally alter the economic structure
of vehicle development.
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5.2 Model Size Scaling Analysis

Parameters in neural networks represent the learned weights that encode the model's
knowledge and decision-making capabilities. GPT4's 1.76 trillion parameters store the
patterns, relationships, and reasoning capabilities derived from its training data. For an
autonomous driving system, these parameters must encode far more complex spatial,
temporal, and safety-critical knowledge.

The scaling from GPT4 to a driving-capable system involves several multiplicative fac-
tors:

« Input complexity (2x factor): Visual data contains more structured, spatially-dependent
information requiring additional parameters to process effectively

- Temporal reasoning (2x factor): Understanding motion, predicting trajectories, and
modeling physics over time demands substantial additional capacity

- Safety-critical decisions (2x factor): The life-or-death nature of driving requires
higher confidence levels, typically achieved through more robust internal represen-
tations

+ Multimodal integration (1.5x factor): Fusing data from cameras, LiDAR, radar, and
GPS requires parameters dedicated to cross-modal understanding

- Domain-specific optimizations (0.5x reduction): Purpose-built architectures for driv-
ing can achieve some efficiency gains over general-purpose language models

Combining these factors (2 x 2 x 2 x 1.5 x 0.5), we arrive at approximately 6x GPT4's
parameter count, suggesting an autonomous driving system could potentially require
roughly 11 trillion parameters to achieve comparable generalisation capabilities within
its domain. This represents not just a quantitative scaling but a qualitative leap in the
complexity of real-world reasoning these systems must perform.

The estimated 11 trillion parameters required for autonomous driving opens up in-
triguing possibilities beyond our computational projections. There is strong evidence of
discontinuous abilities emerging in large language models, where new capabilities appear
suddenly as parameters are scaled up (Bommasani et al. 2021; Wei et al. 2022). Moving
from GPT4's approximately 1.76 trillion parameters to our proposed 11 trillion parameters
will almost certainly unlock unanticipated capabilities (Ganguli et al. 2022; Hoffmann et
al. 2022). While we cannot predict the specific nature of these emergent abilities, histori-
cal patterns suggest that such dramatic scaling often produces qualitative leaps in model
capabilities rather than merely quantitative improvements.
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6 Great Scott! Requirements in the Unoptimised Approach

Based on extrapolations from GPT4's reported requirements and the scaling factors
we've established, a comprehensive end-to-end autonomous driving system would re-
quire computational resources that defy practical implementation. The analysis above
assumes 2025 technology levels without any efficiency optimisations — essentially ask-
ing what it would take to build such a system today using ratios consistent with GPT4's

development.

Starting from GPT4's baseline and applying our 6x scaling factor for parameters and

120x for training data, the full resource requirements emerge in stark detail:

Table 3: Training requirements for unoptimised autonomous driving system

Training Requirements

Training Tokens 1.56 x 10"
Training driving data 501,543 hours
Training data size 3,993,600 TB
Parameters 1.06 x 10'3
GPUs (A100s) assumed

Training FLOPs 3.29 x 10%8
Training time 32,593 days (89 years)

The energy and cost implications are just as staggering:

Table 4: Economic and environmental costs of unoptimised training

Cost Category

Training energy consumption

Training CO, emissions 9,152,000 tons CO,-e
Training hardware cost $1,006,250,000
Training energy cost $3,520,000,000
Driving data acquisition

Other costs $4,526,250,000
Total Training cost $9,152,731,481

23,467 GWh

$100,231,481
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The onboard deployment requirements prove equally prohibitive:

Table 5: Vehicle deployment requirements for unoptimised system

Vehicle Requirements Value
Model weights storage 5,280 GB
Onboard compute requirement 1.82 x 10" FLOPS/s
Onboard Thor chips needed 9,124
Onboard energy demand 364,954 kW
Battery range reduction —-100.00%
Onboard hardware cost per vehicle $182,476,800

Most of the above results should be fairly self explanatory with the exception of "On-
board Thor chips needed”. As a benchmark, our vehicle deployment analysis references
NVIDIA’s Thor system-on-chip (SoC). This product has been specifically designed for au-
tonomous vehicle applications (NVIDIA Corporation 2023). Our cost estimate of $20,000
per Thor unit represents an extrapolation from current high-performance automotive
computing platforms, though NVIDIA has not released official pricing. Economies of scale
and technological advancement could reduce these costs significantly by deployment
timeframes, this is accounted for in our calculations. The power consumption calcula-
tions assume each Thor chip operates at approximately 400 watts under full computa-
tional load, consistent with current high-performance automotive computing systems.

To put the onboard power requirements in perspective: at 364,954 kW, the system
would consume roughly half the power output of a DeLorean’s fictional flux capacitor
(1.21 gigawatts). Unlike Doc Brown'’s time machine, however, this power draw would be
continuous, making it physically impossible to implement in any production vehicle. The
energy demand exceeds the total power delivery capacity of current high-voltage auto-
motive systems by more than two orders of magnitude.

The 89-year training time would require maintaining a cluster of 50,000 A100 GPUs,
twice the number used for GPTy, in perfect operational condition for nearly a century. The
training energy consumption alone would roughly equal the annual electricity usage of a
small European nation, with a carbon footprint equivalent to 2 million cars driven for a
year.

These figures clearly demonstrate that an unoptimised transformer-based approach
represents not merely an engineering challenge but a fundamental impossibility with cur-
rent or near-future technology. The path to viable autonomous vehicles must necessarily
run through dramatic efficiency improvements rather than brute-force scaling of existing
architectures.

7 Mr. Fusion’s Promise: The Optimised Approach

While the unoptimised approach reveals a computational impossibility, recent ad-
vances in Al efficiency offer genuine hope. The path to practical autonomous vehicles
runs not through brute-force scaling but through dramatic efficiency improvements that
are likely to emerge over time.
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The target efficiency improvement can be fairly easily specified, we require approx-
imately a 100,000x reduction in power consumption to bring onboard energy require-
ments below 5kW, which represents a reasonable practical limit comparable to existing
auxiliary systems in electric vehicles (Farrington and Rugh 2013).

Such a massive efficiency gain might seem fantastical, but history provides compelling
evidence that such transformations are not only possible but predictable over 25-year
timeframes. Just as Doc Brown'’s Mr. Fusion transformed the power requirements of time
travel, efficiency improvements can fundamentally alter what's possible with computa-
tional systems.

71 The Microcomputer Revolution: A Historical Blueprint

The personal computer revolution offers the most directly relevant precedent for under-
standing how dramatic efficiency improvements in computing can unfold over decades.
Consider the transformation from the Apple Il (1977) to a modern smartphone—a period
that demonstrates the feasibility of 100,000x improvements.

Table 6: Computing evolution over 45 years

Metric Apple 1 (1977) iPhone 14 (2022)
Processor speed 1 MHz 3,460 MHz
RAM capacity 4 KB 6 GB
Storage capacity  None (cassette) 128 GB
Cost (2022 dollars) $6,200 $799

Sources: Apple Computer Inc. (1977), Apple Inc. (2022), U.S. Bureau of Labor Statistics (20224), and Wikipedia
(2024b,¢)
The compound effects are staggering:
- Processing speed: 3,460x improvement.
+ Memory capacity: 1.5 millionx improvement.

+ Cost per unit of processing power: approximately 27,000x reduction (7.8x cost re-
duction x 3,460x speed improvement)

These improvements followed Moore's Law remarkably consistently, with transistor
density doubling approximately every 18 months (Moore 1965). Moore’s Law traditionally
focused on transistor density, but its broader implications encompass multiple efficiency
vectors (Mack 2011):

- Transistor shrinking: Smaller transistors require less power and switch faster

« Architectural innovations: New designs like RISC, GPU parallelism, and specialised
neural processing units

« Manufacturing advances: From micron-scale to nanometer processes, enabling dra-
matic power reductions

- Software optimization: Better algorithms and compilers extracting more perfor-
mance from existing hardware

Between 1977 and 2022, we observed more than 30 doublings in transistor density —
a 1-billion x increase — consistent with Moore’s Law (Moore 1965). However, efficiency
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gains in computing also depended on architectural and algorithmic breakthroughs, par-
ticularly after mid-2000s (Hennessy and Patterson 2019). Across that period, power effi-
ciency improved dramatically, and cost per computation dropped substantially, depend-
ing on workload and hardware type (Koomey et al. 2011). These improvements came not
just from raw transistor scaling, but also from architecture (RISC, GPUs, NPUs), manufac-
turing (nm-scale lithography), and algorithmic compression and sparsity.

For a 25-year projection (2025-2050), even a conservative continuation of historical
trends yields (doubling every 18 months):

2(25x12)/18 _ 91667 100, 000x ()

This matches our requirement precisely, suggesting that a 100,000x efficiency im-
provement by 2050 aligns with historical precedent rather than representing an optimistic
outlier.

Recent developments in Al hardware provide encouraging contemporary examples:

- Apple’s Neural Engine: Achieved 10x efficiency improvement in just two chip gener-
ations (2018-2020) (Wikipedia 2024a).

+ Google's TPU progression: TPUv offers 2.5x better performance per watt than TPUv3
after just two years (Jouppi, Yoon, Kurian, et al. 2021).

 NVIDIA's efficiency advances: The H100 provides 4x the training efficiency of the
A100 in dense workloads (NVIDIA Corporation 2022).

These rapid improvements suggest that focused research on autonomous driving work-
loads could accelerate efficiency gains beyond general-purpose computing trends.

The historical evidence supports the feasibility of 100,000x efficiency improvements
over 25 years. This isn't speculative technology — it's the continuation of well-established
trends that have driven the computing industry for over half a century. Just as the micro-
computer revolution made desktop computing possible, these efficiency gains promise to
make transformer-based autonomous vehicles a practical reality by 2050.

7.2 A Pathway to 100,000x Efficiency

While historical trends demonstrate the feasibility of massive efficiency gains, achiev-
ing them requires concrete technological advances across multiple fronts. Our analysis
identifies eight key improvement areas, each contributing multiplicatively to reach the
required 100,000x overall improvement by 2050.

The following analysis projects efficiency improvements based on current research
trends. While specific improvement factors and timelines are necessarily speculative,
each technique is grounded in active research with demonstrated early results. The over-
all purpose is to demonstrate that there is a realistic pathway to 100,000x efficiency
improvement rather than predict the precise timing or technology that will deliver these
improvements.
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Table 7: Projected efficiency improvements and their likelihood of achievement

Improvement Area Reduction Probability Weighted Timeline

Quantization 4X 75% 3.0% 2024-2026
Hardware Specialisation 15X 75% 11.25% 2025-2030
Parameter Sparsity 10X 95% 9.5Xx 2026-2030
Attention Optimisation 30X 85% 25.5X 2028-2032
Model Architecture 5% 50% 2.5% 2030-2035
Spatiotemporal Redundancy 6% 85% 5.0% 2030-2035
Activation Sparsity 2X 50% 1.0X 2035-2040
Total Expected Reduction 100,000x By 2050

7.21 Quantization (4x improvement, 75% probability)

Quantization reduces the precision of model weights and activations, trading minimal
accuracy for substantial efficiency gains (Jacob et al. 2018). This technique represents
one of the most mature efficiency approaches, with commercial implementations already
achieving 2-3x improvements in deployment scenarios (Nagel et al. 2021):

- 8-bit quantization: Already standard in many deployments, providing significant
memory and computational savings (Wu et al. 2020)

- 4-bit and lower: Recent advances show viability with careful calibration, enabling
even greater efficiency gains (Dettmers et al. 2023)

« Mixed precision: Use higher precision only where necessary, optimizing the accuracy-
efficiency trade-off (Micikevicius et al. 2017)

+ Dynamic quantization: Adjust precision based on uncertainty and importance of
specific computations (Banner et al. 2019)

The high probability reflects the maturity of quantization techniques and their proven
effectiveness across diverse neural network architectures. Current research focuses on
pushing quantization to lower bit-widths while maintaining model performance, with 4x
efficiency improvements representing a conservative estimate based on existing commer-
cial deployments.

7.2.2 Hardware Specialisation (15x improvement, 75% probability)

Custom silicon designed specifically for neural network inference offers dramatic effi-
ciency gains over general-purpose processors (Jouppi, Young, et al. 2017). Specialised
hardware can be optimised for the specific computational patterns found in transformer
architectures, eliminating overhead associated with general-purpose computing (Sze et
al. 2017):

+ Neural processing units (NPUs): Dedicated tensor computation hardware optimised
for matrix operations and attention mechanisms (Chen, Yang, et al. 2019).

+ In-memory computing: Reduce data movement overhead by performing computa-
tions directly within memory arrays (Sebastian et al. 2020).

« Analog computing elements: Use physical properties for specific operations, offer-
ing potential for ultra-low power inference (Ambrogio et al. 2018).

+ Photonic computing: Use light for matrix multiplication operations, promising sig-
nificant power reductions (Shen et al. 2017).
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Companies like Tesla (with their FSD chip) and Google (with TPUs) have already demon-
strated 5-10x improvements over general-purpose hardware (Jouppi, Yoon, Ashcraft, et al.
2021; Lambert 2019), with next-generation designs targeting even greater gains. The au-
tomotive industry’s focus on edge computing for autonomous vehicles provides strong
incentives for continued hardware specialisation, making 15x improvements achievable
within the projected timeline.

7.2.3 Parameter Sparsity (10x improvement, 95% probability)

Parameter sparsity leverages the fact that neural networks remain effective even when
80-90% of their weights are zero or near-zero (Han et al. 2015). This technique, already
demonstrated in models like BERT and GPT variants (Michel et al. 2019; Prasanna et al.
2020), involves:

« Pruning: Systematically removing weights that contribute little to model perfor-
mance through structured or unstructured approaches (Louizos et al. 2017a).

- Sparse training: Training models to naturally develop sparse weight distributions
from initialisation (Mocanu et al. 2018)

- Dynamic sparsity: Adapting which weights are active based on the specific input,
enabling input-dependent efficiency (Renda et al. 2020).

Current research shows 80% sparsity with minimal performance loss, and industry
implementations like sparse transformer blocks are already in production (Jaszczur et al.
2021). The high probability reflects both proven current capabilities and straightforward
scaling to higher sparsity levels. Recent work demonstrates that even 90% sparsity can
be achieved while maintaining competitive performance on language tasks (Sanh et al.
2020), suggesting 10x efficiency gains are readily achievable.

7.2.4 Attention Optimisation (30x improvement, 85% probability)

Standard transformer attention has O(n?) complexity, meaning computational require-
ments grow quadratically with sequence length (Vaswani et al. 2017). Novel attention
mechanisms promise dramatic reductions in both computational and memory require-
ments (Tay et al. 2022):

« Linear attention: Approximations like Linformer and Performer reduce complexity
to O(n), enabling processing of much longer sequences (Choromanski et al. 2020;
Wang, Li, et al. 2020).

- Sparse attention: Patterns like local windows and global tokens (as in Longformer)
that focus computation on relevant regions (Beltagy et al. 2020; Child et al. 2019).

« Flash attention: Memory-efficientimplementations that reduce I/0 overhead through
careful memory hierarchy optimisation (Dao 2023; Dao et al. 2022).

- Hardware-aware designs: Attention patterns optimised for specific chip architec-
tures, maximizing throughput on available hardware (Jaszczur et al. 2021; Rabe and
Staats 2021).

Early implementations already show 5-10x speedups, with theoretical foundations
suggesting 30x is achievable as these techniques mature and combine (Peng et al. 2027;
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Qin et al. 2022). The high probability reflects the active research focus on attention effi-
ciency and the demonstrable progress already achieved in reducing transformer compu-
tational complexity.

7.2.5 Model Architecture (5x improvement, 50% probability)

Beyond incremental optimisations, entirely new architectures may emerge specifically
designed for autonomous driving (Carion et al. 2020b; Dosovitskiy et al. 2020):

« Mixture of Experts (MoE): Only activate relevant network portions for specific inputs,
dramatically reducing computational load while maintaining model capacity (Fedus
et al. 2021; Riquelme et al. 2021).

- Hierarchical models: Process information at multiple resolutions simultaneously,
enabling efficient multi-scale understanding of driving scenes (Liu, Lin, et al. 2021b;
Wang, Xie, et al. 2021).

- Event-driven processing: React to changes rather than constantly processing, lever-
aging temporal sparsity in driving scenarios (Gehrig et al. 2019; Messikommer et al.
2022).

 Neuromorphic designs: Brain-inspired architectures with inherent efficiency, poten-
tially offering orders of magnitude power reductions (Davies et al. 2018; Roy et al.
2019).

The moderate probability reflects the uncertainty in predicting architectural break-
throughs, though current research directions appear promising. Recent work on vision
transformers specifically adapted for autonomous driving shows potential for significant
efficiency gains through domain-specific design choices (Chen, Li, et al. 2022; Li, Ge, et al.
2023).

7.2.6 Spatiotemporal Redundancy Exploitation (6x improvement, 85% probabil-
ity)
Driving perception involves significant redundancy across both time and space—consecutive

frames share most information, and visual scenes contain repetitive spatial patterns that
can be leveraged for efficiency (Hu et al. 2018; Liu, Huang, et al. 2018; Zhu et al. 2017):

« Frame differencing and motion tracking: Process only changes between frames while
tracking object motion, reducing computational load for static scene elements (llg
et al. 2017; Sun et al. 2018).

- Foveated processing: Higher resolution only where attention is focused, mimicking
human visual processing and concentrating computation on safety-critical regions
(Kim and Canny 2017).

+ Keyframe and multi-resolution systems: Full processing on select frames with spa-
tial hierarchies, interpolation for others, enabling efficient spatiotemporal under-
standing (Jiang et al. 2018; Lin et al. 2017; Zhao et al. 2017).

- Predictive processing: Use motion models and scene structure to anticipate next
states and compress common driving patterns (Luc et al. 2017; Mathieu et al. 2015).

- Adaptive spatiotemporal sampling: Higher processing for dynamic regions and com-
plex spatial areas, lower for static backgrounds and predictable scene elements (Fig-
urnov et al. 2017; Korbar et al. 2019).
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The high probability reflects the well-established nature of both temporal and spatial
redundancy exploitation techniques. Recent work in autonomous driving has demon-
strated that combined spatiotemporal consistency can achieve significant efficiency gains
while maintaining perception accuracy (Chen, Zhou, et al. 2019; Qi et al. 2021). However,
safety-critical applications demand extensive validation of any computational shortcuts,
particularly ensuring that dynamic objects and small spatial details critical for safety are
never missed (Bojarski et al. 2016; Sauer et al. 2018).

7.2.7 Activation Sparsity (2x improvement, 50% probability)

Beyond parameter sparsity, even activated portions of networks often contain sparse pat-
terns that can be exploited for computational efficiency (Elsen et al. 2020; Kurtz et al.
2020):

 ReLU exploitation: Naturally creates sparse activations through zero-valued out-
puts, enabling skip computations (Wang, Yu, et al. 2018)

- Gated architectures: Only activate neurons when necessary, using learned gating
mechanisms to control computation flow (Chollet 2017; Howard et al. 2017)

« Conditional computation: Skip layers based on input characteristics, adapting net-
work depth to input complexity (Bengio et al. 2013; Graves 2016)

- Learned sparsity patterns: Networks that naturally develop efficient activation pat-
terns through training objectives that encourage sparsity (Louizos et al. 2017b; Molchanov
et al. 2017)

The moderate probability reflects the difficulty of achieving high activation sparsity
while maintaining performance, particularly for safety-critical applications (Veit and Be-
longie 2018). While activation sparsity has shown promise in computer vision tasks, au-
tonomous driving applications require consistent performance across all network acti-
vations, making aggressive sparsification challenging (Huang et al. 2017; Teerapittayanon
et al. 2016). Recent work suggests that 2x improvements are achievable through careful
activation sparsity design without compromising safety-critical performance.

7.2.8 Compound Effects

These improvements multiply together, not add:

Total =3.0x11.25%x9.5%x25.5x2.5x5.0x1.0= 100,000x (2)

The timeline shows a progression from more mature techniques (quantization, hard-
ware specialisation) deployed in the mid-2020s to more experimental approaches (spa-
tiotemporal redundancy, activation sparsity) maturing in the 2030s and 2040s. This staged
development allows for iterative validation and refinement, crucial for safety-critical au-
tonomous driving applications. The multiplicative nature of these improvements means
that even partial success across multiple fronts can deliver substantial efficiency gains,
providing multiple pathways to achieve the required 100,000x improvement by 2050.
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8 2040: Training Feasibility Achieved, Deployment Still Distant

By 2040, the compound effects of efficiency improvements fundamentally transform
the economics of training transformer-based autonomous driving systems. At this inflec-
tion point, with approximately 1,024x efficiency gains realised, model training becomes
a manageable undertaking comparable to current GPT4 development efforts. However,
the onboard deployment challenge remains formidable, creating a critical gap between
training capability and practical implementation.

Table 8: Training requirements reduced by 1,000x efficiency gains

Training Requirements (2040) Value
Training Tokens 1.56 X 10'°
Training driving data 501,543 hours
Parameters 1.06 x 10"3
GPUs (A100 equivalent) 25,000
Training FLOPs 3.22 x 102
Training time 64 days

Table 9: Training costs now within reach of major corporations

Cost Category (2040) Value
Training energy consumption 23 GWh
Training CO, emissions 6,113 tons CO,-e
Training hardware cost $233,093,400
Training energy cost $4,297,673
Driving data acquisition $100,231,481
Other costs $237,391,073
Total Training cost $575,013,627

The transformation by 2040 is remarkable: training time drops from 89 years to a man-
ageable 64 days, while total costs fall from over $9 billion to approximately $575 million.
At this scale, training becomes comparable to current flagship Al projects. The 25,000 GPU
cluster requirement matches or slightly exceeds what leading technology companies de-
ploy today for language model training. The 64-day training window aligns with typical
development cycles, allowing for iterative improvements and experimentation. Most im-
portantly, the $575 million total investment falls within the research budgets of major
automotive manufacturers and technology giants.

This point represents the critical threshold where transformer-based autonomous driv-

ing transitions from theoretical curiosity to practical engineering project. However, the
onboard deployment story remains challenging:
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Table 10: Vehicle deployment still prohibitive despite 1,000x efficiency gains

Vehicle Requirements (2040) Value
Model weights storage 5,280 GB
Onboard compute requirement 1.78 x 10'® FLOPS/s
Onboard Thor chips needed 9
Onboard energy demand 356 kW
Range reduction -97.49%
Onboard hardware cost per vehicle $82,558

The onboard power requirement of 356 kW, while dramatically improved from 2025's
365 MW, would still consume the vehicle’s entire battery capacity in approximately 12 min-
utes, making practical deployment impossible.

The 2040 milestone marks the end of the impossibility phase and the beginning of the
implementation phase in transformer-based autonomous driving. While full consumer
deployment remains a decade away, the transition from science fiction to engineering
challenge represents a critical point in the autonomous vehicle revolution.

9 2050: Practicality Achieved—The Consumer Revolution

By 2050, the cumulative 104,032x efficiency improvement fundamentally transforms
both training economics and vehicle deployment feasibility. Training costs fall to levels
accessible to mid-sized companies, while onboard requirements finally meet the practi-
cal constraints of consumer vehicles. This marks the true beginning of the Level 5 au-
tonomous vehicle era.

Table 11: Training requirements in 2050: Accessible to mid-sized companies

Training Requirements (2050) Value
Training Tokens 1.56 x 10"°
Training driving data 501,543 hours
Parameters 1.06 x 10"3
GPUs (A100 equivalent) 1,000
Training FLOPs 317 x 1023
Training time 16 days

The economic transformation is striking: total training costs drop to approximately
$111 million — comparable to developing a major automotive subsystem such as a new
transmission technology or a complete vehicle interior redesign for a luxury brand (Bel-
zowski 2010). The 16-day training window enables rapid experimentation and improve-
ment cycles. With only 1,000 GPUs required, training infrastructure becomes accessible
to a broader range of companies beyond the current Al giants.

More critically, vehicle deployment constraints finally align with practical consumer

requirements:
The 3.5 kW power requirement falls within the operational envelope of modern electric
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Table 12: Training costs approach the scale of traditional automotive R&D

Cost Category (2050) Value
Training energy consumption 0.2 GWh
Training CO, emissions 47 tons CO,-e
Training hardware cost $5,582,465
Training energy cost $49,094
Driving data acquisition $100,231,481
Other costs $5,631,559
Total Training cost $111,494,600

Table 13: Vehicle deployment becomes commercially viable

Vehicle Requirements (2050) Value
Model weights storage 76 GB
Onboard compute requirement 1.75x 10" FLOPS/s
Onboard Thor chips needed 0.1
Onboard energy demand 3.5 kW
Range reduction -27.68%
Onboard hardware cost per vehicle $487

vehicles, comparable to running air conditioning and premium audio systems simultane-
ously (Farrington and Rugh 2013). At 27.68% range reduction, the trade-off is acceptable,
particularly as battery technology continues improving in parallel. The $487 hardware cost
per vehicle sits squarely within automotive bill-of-materials expectations for advanced
features (Deichmann et al. 2023).

The 2050 milestone represents more than a technical achievement — it marks the
transformation of autonomous driving from limited and elite to a potential global trans-
portation revolution. With both training and deployment constraints resolved, the path
clears for truly ubiquitous Level 5 autonomy, fundamentally reshaping how humanity
moves through the world.
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GPT4 as a Commodity: The 2050 Perspective

To fully appreciate the transformation efficiency brings, consider how our baseline
model — GPT4 — becomes accessible by 2050. Current GPT4 development required
vast resources and months of dedicated supercomputing clusters (Henshall 2024).
Under our efficiency improvement trajectory, these requirements shrink dramatically.

Metric GPT4(2023) GPT4(2050)
Training cost $1,016,027,778 $223,435
Training time 91 days 1 day
GPU cluster size 25,000 A100s 20 A100s
Energy consumption 33 GWh <041 GWh
CO, emissions 12,711 tons 0.1 tons

Table 14: GPT4 development requirements: 2023 vs 2050

This transformation democratises what was once the exclusive domain of tech giants.
In 2050, training a GPTs caliber model would cost roughly $223,435—comparable to
hiring an experienced engineer for a year. The single-day training time fits comfort-
ably within standard business analytics cycles, while the 20-GPU requirement lies
within reach of university research labs or mid-sized businesses.

This commoditisation pattern mirrors the personal computer revolution—what
required university computing centers in 1970 fit on a desktop by 1990. Similarly,
what required billion dollar investments in 2023 becomes accessible to mid-sized
businesses by 2050.

The autonomous driving transformer represents not just a transportation revolution
but a continuation of computing’s democratising trajectory, following Feynman's
principle that there’s always room at the bottom (Feynman 1960)—where relentless
efficiency improvements eventually transform today’s supercomputing capabilities
into tomorrow’s commodity technologies, making advanced Al accessible to increas-
ingly broad segments of society.

In this context, our 2050 autonomous driving system — while vastly more complex
than GPT4 — becomes economically viable precisely because it leverages the same
efficiency revolution that transformed yesterday’s Apple Il into the iPhone.
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10 Research Timeline and Agenda

Our analysis reveals a clear 25-year pathway to Level 5 autonomous vehicles, with
distinct phases aligned to technological maturation and economic viability. This compre-
hensive timeline integrates data collection, efficiency research, model development, and
deployment preparation into a coherent strategy.

101 Phase 1: Data Acquisition (2025-2030)

The immediate priority involves establishing comprehensive driving datasets through a
coordinated global data collection effort:

Table 15: Phase 1 timeline: Building the foundational dataset

Milestone Target Date

Deploy 50-vehicle data collection fleet 2025-2026
Establish global coverage partnerships 2026-2027
Gather 501,543 hours of driving data 2025-2030
Develop real-time annotation systems  2027-2028
Complete data collection ($100M total) 2030

This phase focuses on capturing global geographic diversity, edge cases, and rare
events while establishing annotation standards and distributed storage infrastructure
for exabyte-scale datasets. A portion of the data should be published for community
research benchmarking to accelerate broader industry progress.

10.2 Phase 2: Efficiency Focus (2030-2040)

This decade prioritises achieving the critical 1,000x efficiency improvement needed for
training feasibility. The most promising near-term breakthroughs are expected in three
core areas:

Table 16: Phase 2 priorities: Critical efficiency breakthroughs

Research Priority Target Improvement Timeline

Quantization 4x reduction 2024-2026
Hardware specialisation 15x% efficiency gain 2025-2030
Parameter sparsity 10x reduction 2026-2030
Combined with attention optimization >1,000x total 2030-2032

These three technologies represent the most mature and commercially viable path-
ways to the needed efficiency gains. Any combination of these improvements, coupled
with advances in attention optimisation (30x potential), provides multiple routes to the
1,000x milestone required for training feasibility. This redundancy reduces technical
risk—researchers need not succeed across all fronts simultaneously.

Delivering these breakthroughs requires coordinated industry action across multiple

fronts. Companies should form public-private research consortiums to share R&D costs
and accelerate progress on quantization and hardware specialisation. Simultaneously,
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major players need to acquire and deploy large-scale GPU training clusters for experimen-
tation, while developing prototype testing environments to validate efficiency improve-
ments. This decade also demands proactive engagement with regulators to establish
early frameworks for autonomous vehicle validation and industry-wide safety standards.

10.3 Phase 3: Model Training (2040-2050)

The training decade begins with exclusive access by major players and evolves to broader
industry participation:

Table 17: Phase 3 timeline: Democratization of model training

Milestone Industry Participation Target Year
First training feasibility achieved 1-2 major tech/automotive pioneers 2040-2042
Large corporation entry 5-7 multinational players 2043-2045
Mid-tier competitor access 10-15 established companies 2046-2048
Broad industry participation 20+ companies globally 2049-2050

This progression reflects continuing efficiency improvements that drive training costs
from $475 million in 2040 down to $11 million by 2050. Early pioneers like Tesla, Google,
or Volkswagen establish initial proof-of-concept models, but, as costs decline, the tech-
nology becomes accessible to a broader range of automotive manufacturers, technology
companies, and regional players.

The decade’s key focus shifts from pure research to practical implementation; multi-
ple competing architectures emerge as companies explore different approaches, iterative
improvement cycles shorten from months to weeks, and extensive simulation testing val-
idates safety performance.

Real-world controlled trials will be needed throughout the decade to demonstrate
practical performance while international regulatory frameworks and harmonised stan-
dards are developed.

10.4 Phase 4: Vehicle Deployment (2050 onwards)

Full consumer viability arrives with the critical 100,000x efficiency milestone. By 2050, the
technical constraints that previously made transformer-based autonomous vehicles im-
practical finally align with consumer requirements: 3.5 kW power consumption becomes
manageable within electric vehicle power budgets, $487 hardware costs per vehicle fall
within standard automotive electronics pricing, and 27.68% range reduction represents
an acceptable trade-off for full autonomy. Model storage requirements of just 76 GB in-
tegrate seamlessly with existing automotive computing architectures.

This technical breakthrough enables autonomous vehicles to transition from premium
luxury feature to standard capability across the automotive industry. Multiple manufac-
turers begin offering Level 5 autonomy across diverse price points, while ongoing model
improvements allow rapid iteration and enhancement. Global deployment extends be-
yond developed markets to cover diverse international environments, from European vil-
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lage centers to sub-Saharan rural roads.

Beyond 2050, the societal impact will begin to extend far beyond individual vehicle
ownership, echoing the transformative effects of railway expansion in the 19th century.
Just as trains revolutionized commerce, urbanisation, and social mobility by connecting
previously isolated communities, transformer-based autonomous vehicles promise sim-
ilarly profound changes.

Transportation-as-a-service models will reshape urban mobility patterns, while rural
and developing regions gain unprecedented access to automated transport, potentially
leapfrogging traditional automotive infrastructure in the same way mobile phones by-
passed landline networks in emerging economies. Like the railway boom that enabled
the growth of suburbs and transformed labour markets, ubiquitous Level 5 autonomy may
fundamentally alter where people choose to live and work, potentially reversing decades
of urban concentration as geographical constraints on mobility dissipate.

10.5 Economic Timeline: The 26-Year Investment Horizon

The research timeline outlined above requires unprecedented financial commitment across
the autonomous vehicle industry. Our cash flow analysis reveals the stark economic re-
ality: achieving transformer-based Level 5 autonomy demands 25 years of sustained in-
vestment before generating meaningful revenue, fundamentally reshaping competitive
dynamics and industry structure.

Table 18: Total financial requirements

Financial Metric Value
Total PV (2025-2050) $618 million
Total investment $1.57 billion

Peak annual investment $524 million (2040)

This investment profile creates profound strategic implications:

- Barrier to Entry: The $618 million, 25-year commitment effectively restricts serious
development to a handful of players—major technology companies (Google, Apple),
automotive manufacturers with substantial resources (Volkswagen, Toyota, Tesla),
and nationally-supported enterprises. Mid-tier companies face a stark choice: part-
ner with leaders or accept the risk of permanent technological obsolescence.

- Data Advantage: Companies beginning data collection in 2030 have the opportunity
to establish an insurmountable head start. The front-loaded nature of investment
means later entrants face significant disadvantages in data quality and coverage.
Early data collection provides not only a head start in research but also the ex-
tended time necessary to capture rare edge cases and achieve comprehensive sce-
nario coverage across diverse global conditions. Companies beginning data early
gain crucial years to identify and document the safety-critical scenarios that may
occur only once in millions of miles—coverage that cannot be replicated through
superior execution alone.

- Platform Economics: The massive upfront investment suggests successful compa-
nies will likely monetise their technology through licensing arrangements. This cre-
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ates potential for new industry structures where a few technology providers enable
many vehicle manufacturers.

The cash flow pattern is starkly different from typical automotive programs, with 3-5
year development cycles. Transformer-based autonomy represents a full-career commit-
ment—engineers beginning this work in 2025 will reach retirement as the first commercial
systems deploy in 2050. This generational timeline requires not just financial staying
power but institutional memory and strategic vision capable of sustaining consistent in-
vestment across multiple economic cycles, leadership changes, and technological disrup-
tions before generating returns.

For context, the $618 million total investment compares to developing 2-3 traditional
vehicle platforms, while the peak $524 million annual commitment in 2040 aligns with
current flagship Al development budgets. These figures position transformer-based au-
tonomy as a major but manageable undertaking for well-capitalised industry participants.

The economic timeline reinforces our core thesis: companies recognising this transi-
tion today and committing accordingly will dominate the transportation landscape of the
2050s and beyond. Those viewing this as a conventional automotive development pro-
gram will find themselves spectators to one of the most significant technological trans-
formations in transportation history.

10.6 Critical Success Factors
This timeline requires coordinated effort across multiple fronts:
1. Sustained Research Investment: Likely more than $10 billion industry-wide over 25
years.
2. Industry Partnerships: Toe enable shared data, infrastructure and risk distribution.

3. Regulatory Evolution: Adaptive frameworks enabling an appropriate balance be-
tween innovation and safety.

4. International Cooperation: Global standards and data sharing to get the most out
of data and model training.

5. Parallel Technology Development: Complementary advances in batteries, sensors,
and connectivity.

The path we've outlined does not reflect optimistic speculation but extrapolation from
established technological trends. Each phase builds upon demonstrable capabilities and
economic realities, creating a robust roadmap toward the transformer-based autonomous
vehicle revolution.

11 Limitations

This analysis, while comprehensive in scope, rests on several important limitations
that readers should consider when interpreting our findings.

Uncertainty in Core Assumptions: The projections presented throughout this paper
are based on a range of assumptions detailed in Appendix A. These assumptions draw
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from academic research and industry-accepted values rather than proprietary informa-
tion from commercial IP owners, introducing inherent uncertainty into our analysis. Key
parameters—including model scaling requirements, efficiency improvement rates, and
computational costs—are estimates based on publicly available information and may dif-
fer from actual commercial implementations.

Timeline Variability: The inherent uncertainty in our assumptions translates to vari-
ability in our projected timeline. Our sensitivity analysis (Appendix C) presents both opti-
mistic and pessimistic scenarios, suggesting a realistic deployment window of 2042-2058,
with 2050 as our central estimate. This range reflects the compound effects of uncertainty
across multiple technological and economic variables, each of which could accelerate or
delay the ultimate timeline.

Incomplete Cost Modeling: Our cost analysis focuses exclusively on core operational
requirements—data acquisition, model training, and deployment infrastructure. We have
not incorporated several potentially significant cost categories:

+ Research and development costs to achieve the projected 100,000x efficiency im-
provement

 Regulatory compliance and safety certification expenses
+ Legal and insurance frameworks for autonomous vehicle deployment
- Infrastructure modifications required for full Level 5 autonomy

These additional costs could substantially increase the total investment required and may
affect the timeline for commercial viability.

Technology-Specific Extrapolation: Our analysis extrapolates from transformer-based
architectures, as these represent the most viable option with substantial evidence re-
garding scaling behavior and computational requirements. However, this approach may
miss potential paradigm shifts. Alternative architectures or entirely new approaches to
machine learning could emerge, potentially accelerating our timeline or fundamentally
altering the computational requirements we project.

Potential for Discontinuous Progress: Our projections assume relatively smooth ef-
ficiency improvements over time, but the history of Al suggests the possibility of dis-
continuous breakthroughs. As observed with large language models, certain capability
thresholds appear to unlock emergent behaviors. Vision transformers may exhibit sim-
ilar discontinuities as they scale, potentially achieving driving-capable performance at
lower parameter counts than our linear extrapolations suggest.

External Technological Factors: Our analysis holds certain external technologies con-
stant, particularly battery performance and energy density. Breakthrough improvements
in these areas could fundamentally alter our calculations. For instance, a 10x improve-
ment in battery energy density would dramatically reduce the impact of computational
power requirements on vehicle range, potentially accelerating deployment timelines.

Safety Factors: Our analysis implicitly assumes that safety-critical validation chal-
lenges will be resolved during the research and training phases, with our estimated 120x
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data multiplier (relative to GPT4) providing sufficient edge case exposure for reliable au-
tonomous operation. However, this assumption merits careful consideration. Unlike text
generation models, where errors result in poor outputs, autonomous vehicle failures
can have catastrophic consequences. Achieving acceptable safety performance may ul-
timately require orders of magnitude more validation data than our projections suggest.
The path from computational feasibility to safety certification represents a distinct chal-
lenge that could extend deployment timelines significantly beyond our 2050 projection.

Despite these limitations, we believe our analysis provides a valuable framework for
understanding the computational economics of transformer-based autonomous vehicles
and the likely trajectory toward Level 5 autonomy.

12 Conclusion

The path to Level 5 autonomous vehicles is clear but requires a fundamental shift. Cur-
rent approaches face insurmountable scaling challenges, while transformer-based sys-
tems offer a potential route to global Level 5 autonomy by 2050. The choice facing industry
leaders today will determine who dominates the transportation landscape of tomorrow.

The key findings:

« Current approaches are scaling dead-ends: Mapping all of the world's roads in detail
and keeping this up-to-date is fundamentally impossible to maintain over time.

- Transformers are the most apparent scalable solution today: Importantly, attention
mechanisms may eliminate the need for exhaustive pre-mapping.

* 100,000x efficiency gains are needed but follow historical precedent: The micro-
computer revolution demonstrates such transformations are possible, not specula-
tive.

+ Critical timeline milestones: 2030 data collection complete ($100M), 2040 training
complete ($475M), 2050 mass deployment ($487/vehicle).

The autonomous vehicle industry stands at a crossroads. Companies that recognise
this transition and invest accordingly will lead the revolution of the 2040s. Those that
continue to pursue scaling dead-ends will become spectators to one of the most signifi-
cant technological transformations in history.

There are clear critical actions for industry leaders:

« Deploy a vehicle data collection fleet of 50+ vehicles before 2030 to capture the
500,000 hours of diverse driving scenarios required.

+ Begin recruiting before a likely intensification of competition for top-tier Al talent
from 2030.

« Establish partnerships with leading Al research institutions focused on transformer
efficiency improvements—particularly in attention optimisation, parameter sparsity,
and hardware specialisation, this should be opeating at full scale by the early 2030s.

« Instigate and closely monitor R&D developments in the 2030s to choose when to
commit to large-scale model training investments.
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« Commit board-level resources to a 25-year investment horizon, because the compa-
nies that begin this transition today will define transportation for the next century.

The future of mobility is transformer-powered and it begins with a $618 million deci-
sion and 25 year commitment made today.
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A Assumptions Register

This appendix documents the key assumptions underlying our analysis. All monetary
values are in 2025 USD unless otherwise specified.

Table 19: Energy and environmental assumptions

Parameter Value Unit | Annual Change
Electricity cost 0.5 S/kWh +1.50%
Carbon intensity | 0.39 | kg CO,e/kWh -3.00%

Table 20: Computational specifications and requirements

Parameter | Value | Unit
Token specifications
Text token size 4 | bytes
Image token size 2,560 | bytes
Computational requirements
Training FLOPs per parameter per token 2 | FLOPs
Inference FLOPs per parameter per token 2 | FLOPs
Parameter storage during inference 0.5 | bytes/parameter
Processing specifications
Context window 32,000 | tokens
Processing window 0.033 | seconds

Table 21: Hardware infrastructure specifications

Parameter | Value | Unit
GPU specifications

GPU unit cost 12,500 | S/GPU

Server cost 15,000 | S/server

GPUs per server 8 | units

GPU power consumption 400 | watts/GPU

GPU performance 312x10" | FLOPS
Infrastructure overhead

Hardware overhead cost 40 | %

Power overhead 50 | %

Utilization factor 75 | %
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Table 22: Vehicle and sensor specifications

Parameter \ Value | Unit
Sensor configuration
Cameras per vehicle 8 | units
Video resolution 1280%720 | pixels
Frame rate 30 | fps
Vision transformer patch size 16x16 | pixels
Vehicle specifications
NVIDIA Thor performance 2x10™ | FLOPS
Thor unit cost 20,000 | S$/unit
Onboard compute efficiency 5x10"° | FLOP/watt
Onboard power overhead 0| %
Electric vehicle baseline
Model Y battery capacity 75 | kWh
Energy consumption 11 | Wh/km
Implied range 532 | km
Average driving speed 65 | km/h

Table 23: Scaling factors for autonomous vehicle requirements

Parameter Value | Rationale

Token multiplier (vs GPT-4) 120x | Visual density and temporal requirements
Parameter multiplier (vs GPT-z) 6x | Spatial and safety-critical processing
Efficiency improvement period 1.5 | years/doubling

Table 24: Data collection operational parameters

Parameter Value | Unit

Data collection fleet size 50 | vehicles

Operating hours per vehicle 8 | hours/day

Vehicle acquisition cost 500,000 | $/vehicle

Driver cost 150 | $/hour

Data storage cost 2.2 | SM/month/exabyte
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B Computational Requirements and Costs Over Time

Table 25: Evolution of computational requirements and costs for GPT4 and autonomous ve-
hicles from 2023 to 2050

GPT4 Autonomous Vehicle (AV) GPT4
Year 2023 2025 2035 2040 2045 2050 2050
Efficiency Improvement 1 102 1,024 10,321 104,032 104,032
Hardware cost factor 100% 60% 46% 36% 28%
Training Tokens 1.30x10"3 1.56x10" | 1.56x10'° | 1.56x10'° | 1.56x10" | 1.56x10'° 1.30x10"3
Training Data (hours) - 501,543 501,543 501,543 501,543 501,543 -
Training Data Size (TB) 52 3,993,600 | 3,993,600 | 3,993,600 | 3,993,600 | 3,993,600 52
Parameters 1.76x10"2 1.06x10" | 1.06x10" | 1.06x10"® | 1.06x10" | 1.06x10'3 1.76x10'?
GPUs (A100s) 25,000 50,000 25,000 25,000 10,000 1,000 20
Training FLOPs 4.58x10% 3.29x10%8 | 3.24x10% | 3.22x10% | 319x10%* | 347x10% 4.40%x10%°
Training Time (days) 91 32,593 642 64 16 16 1
Training Energy (GWh) 33 23,467 231 23 2 0.2 0.0003
Training CO; (t) 12,711 9,152,000 69,935 6,113 534 47 04
Driving data acquisition $100M $100M $100M $100M $100M
Data storage (per year) $105M $63M $49M $38M $29M
Hardware Cost $503M $1,006M $301M $233M $72M $5.6M $112K
Energy Cost $4.9M $3,520M $40M $4.3M $460K $19K $68
Other Costs $508M $4,526M $341M $237M S$73M $5.6M $112K
Total Training Cost $1,016M $9,153M $783M $575M $245M $111M $223K
Model Storage (GB) 880 5,280 5,280 5,280 763 76 13
Onboard Compute - 1.82x10'"° | 1.80x10"7 | 1.78x10'® | 1.77x10'° | 1.75%x10' -
(FLOPS/s)
Onboard Thor Chips - 9,124 90 9 1 041 -
Needed
Power Demand (kw) - 364,954 3,592 356 35 35 -
Range Reduction - -100% -99.75% -97.49% -79.42% -27.68% -
Hardware Cost/Vehicle - $182M $1aM $82K $6.3K $4,87 -
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Table 26: 25-Year Cash Flow Analysis: Investment Breakdown by Category (millions 2025 USD)

Year Data Acquisition | Data Storage | Model Training | Total Cost
PV (7%) $67 $390 $161 $618
Sum $100 $994 $475 $1,569
2025 $o $o $o $o
2026 $o $o $o $o
2027 $0 $0 So S0
2028 $o $o $o $o
2029 $o $o $o $o
2030 $100 $o $o $100
2031 %0 $78 $o $78
2032 $o STk S0 YA
2033 $o $70 S0 $70
2034 $o $66 $o $66
2035 $o $63 $o $63
2036 $o $60 $o $60
2037 $o $57 $o $57
2038 $o $54 $o $54
2039 %0 $51 $o $51
2040 $o $49 $475 $524
2041 $o S46 S0 $46
2042 $o Sus S0 Sus
2043 $o $42 $o $42
2044 $o $40 S0 $40
2045 $0 $38 $0 $38
2046 %0 $36 $o $36
2047 $o $34 S0 $34
2048 So $32 So $32
2049 $0 $31 $o $31
2050 $0 $29 $o $29
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C Sensitivity Analysis

Table 27: Sensitivity analysis of key parameters on project economics and feasibility

Scenario PV Data | Data Initial Training | Training Onboard
Cost | Time | Cost | Storage | Time 2040 | Cost 2040 | Power 2050
($M) | (years) | ($m) ($m) (days) ($m) (kw)
Base case 618 3.4 | 100 105 64 475 3.5
Token scaling scenario
Token multiplier (81x) 474 2.3 76 71 43 472 3.5
Token multiplier (256x) 1,121 73| 185 225 136 485 3.5
Parameter scaling scenarios
Parameter multiplier (3x) | 617 3.4 | 100 105 32 470 1.8
Parameter multiplier (9x) | 620 3.4 | 100 105 95 479 5.3
Efficiency improvement scenarios
Doubles every 12 months 615 3.4 | 100 105 2 466 <041
Doubles every 24 months | 632 3.4 | 100 105 360 515 63.0
Hardware cost scenarios
GPU cost 0% CAGR 1,155 3.4 | 100 105 64 1,015 4.0
GPU cost 10% CAGR 353 3.4 | 100 105 64 216 4.0

The sensitivity analysis reveals several key insights:

- Token requirements have the most dramatic impact on project economics, with PV

ranging from $474M to $1,121M.

- Efficiency improvement rates critically determine feasibility—doubling every 12 months
enables deployment with negligible power. requirements by 2050, while 24-month
doubling periods result in impractical 63 kW requirements, with feasibility achieved

in around 2058.

- Parameter scaling primarily affects onboard power requirements, with minimal im-

pact on overall project PV.

- Hardware cost trajectories significantly influence training costs but have limited ef-
fect on final deployment feasibility.

These results support our base case timeline of 2050 for commercial deployment, with
realistic bounds of 2042-2058 depending on actual efficiency improvements achieved.
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